Wildlife 311/511 - Quantitative Methods for Wildlife and Fisheries Research and Management 2019 Fall - Tentative Course Syllabus

Professor: Jason Riddle

Office: TNR 265
Phone: 715-346-3224
Email: Jason.Riddle@uwsp.edu
Office Hours: Wednesdays 1-3:00pm, or by appointment
Class Meeting Times: Section 1 (Tuesdays and Thursdays 11:00AM-12:15PM TNR 359)
Section 2 (Tuesdays and Thursdays 12:30PM-1:45PM TNR 352).
Learning Outcomes: I don't want you to be afraid of statistics. I want you to love them and understand how they can help you as a natural resource manager/scientist. Students who satisfactorily complete this course should be able to:

1) Define what statistics are and why we need them;
2) Recognize different data types and choose appropriate graphing techniques for each type;
3) Apply and communicate some basic fundamentals of sampling and experimental design;
4) Recognize the close relationship between management and experimentation;
5) Design your own simple experiments and critique other's experimental design;
6) Select the most appropriate parametric and non-parametric tests for a particular hypothesis; and
7) Communicate some of the current and future trends in Wildlife statistics.

Prerequisite/Corequisite: MATH 255 - Elementary Statistical Methods. It also will be helpful if you already have taken a Calculus course.

Textbook: The required text book for this course is McKillup (2011) Statistics Explained: An Introductory Guide for Life Scientists, 2nd Edition, Cambridge University Press. The book is available as a rental, but I highly recommend that you purchase a copy of your own.

Canvas: Most course material and your grades will be available on Canvas.
Classroom Climate: It is critical that you feel comfortable exploring your own ideas and asking questions in this class. Please help me to create a classroom that facilitates questions and conversations about the material.

Course Schedule:

Week 1

9/3 Introduction to the course
9/5 Why bother with statistics? (Chapters 1 and 2)

Week 2

9/10 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
9/12 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)

Week 3

9/17 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
9/19 Data types, visualization, and communication (Chapter 3)

Week 4

9/24 Data types, visualization, and communication (Chapter 3) \& Some probability basics (Chapters 6 and 7)
9/26 Exam 1

Week 5

10/1 To be determined
10/3 To be determined

Week 6

10/8 Introduction to Parametric Statistics and descriptive statistics for populations and samples
10/10 Descriptive statistics for populations and samples

Week 7

10/15 Z-tests and t-tests (Chapters 9 and 10)
10/17 Z-tests and t-tests (Chapters 9 and 10)

Week 8

10/22 Single factor ANOVA (Chapter 11)
10/24 Single factor ANOVA (Chapter 11)

Week 9

10/29 Follow-up tests (Chapter 12)
10/31 Two factor ANOVA (Chapter 13)

Week 10

11/5 Two factor ANOVA (Chapter 13)
11/7 Exam 2

Week 11

11/12 Simple linear regression (Chapters 16 and 17)
11/14 Simple linear regression (Chapters 16 and 17)

Week 12

11/19 Introduction to Nonparametric Statistics and Chi-square tests
11/21 Chi-square tests \& Mann-Whitney test (Chapter 21)

Week 13

11/26 Mann-Whitney test (Chapter 21) and Kruskal-Wallis test
11/28 Turkey's test with gravy follow-up procedures.

Week 14

12/3 Information-Theoretic approaches
12/5 Information-Theoretic approaches

Week 15

12/10 Undergraduate presentations (Chapter 5)
12/12 Bayesian approaches

Final Exam

Section 1: Thursday, December $19^{\text {th }}$ from 10:15AM to 12:15PM
Section 2: Monday, December $16^{\text {th }}$ from 2:45PM to 4:45PM
Assignments and Scoring:
Written Assignment 50pts
Exam 1 100pts
Exam 2 100pts
Group Project 150pts
Problem Sets 250pts
Final Exam 200pts
Total 850pts

Grade	\%
A	$93+$
A-	$90-92$
B+	$87-89$
B	$83-86$
B-	$80-82$
C+	$77-79$
C	$73-76$
C-	$70-72$
D+	$67-69$
D	$60-66$
F	≤ 59

